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Abstract: Sweetpotato French fry (SPFF) textures have been associated with dry
matter and starch contents, but these do not fully account for all textural dif-
ferences. This study investigated the relationships between the physicochemi-
cal properties of sweetpotato starch and textural attributes of sweetpotato fries.
Starches from 16 sweetpotato genotypes that varied in dry matter content were
isolated and analyzed. The amylose content, pasting temperatures and viscosi-
ties, and textural properties of equilibrated starch gels were measured. Corre-
lational analysis was performed with the respective SPFF mechanical and sen-
sory texture attributes. Sweetpotato starch amylose content ranged from 17.3%
to 21.1%, and the pasting and gel textural properties varied significantly between
starches. Starch from orange-fleshed sweetpotatoes had lower pasting tempera-
tures than starches from yellow/cream-fleshed genotypes, 72.2 + 2.0 and 75.5 +
1.1 °C, respectively. Notable inverse correlations were observed between the
starch pasting temperature and perceived moistness (r = —0.63) and fibrousness
(r=-0.70) of fries, whereas SPFF denseness was positively associated with starch
pasting viscosity (r = 0.60) and nonstarch alcohol-insoluble solids content. Fry
textures were likely affected by cooked starch properties, which should be con-
sidered when selecting varieties for sweetpotato fries.

Practical Application: Without the aid of a batter, sweetpotato French fries
(SPFFs) tend to be soft and limp—undesirable attributes in a fried food. The phys-
iochemical properties of starch, the most abundant component in sweetpotato
fries, were further explored in this study to better understand the properties of
sweetpotato starch that influence SPFF textures. These findings can be used by
sweetpotato processors and breeders for developing new sweetpotato varieties
that are designed for production of fried products with desirable textures.
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1 | INTRODUCTION

Sweetpotatoes (Ipomoea batatas) are a starchy storage
root that is regarded to be the seventh most important
crop in the world and produces the most biomass and
nutrients per hectare than any other crop (Loebenstein,
2009). Consumption of sweetpotatoes and compounds
isolated from sweetpotatoes has been associated with a
myriad of health promoting benefits, from antioxidant
and anticancer to combating obesity and contributing
prebiotics (Albuquerque et al., 2019; Wang et al., 2016).
Orange-fleshed sweetpotatoes (OFSP) in particular are an
important dietary source of S-carotene and are promoted
for combating vitamin A deficiency in vulnerable popula-
tions (Truong et al., 2018). The United States’ sweetpotato
market, primarily made up of OFSP varieties, is steadily
growing with the annual production value being more
than double that in 2000 and the export market value
quadrupling since 2008 (USDA-ERS, 2020; USDA-NASS,
2020).

One of the reasons for this growth is the introduction
of a greater range of processed sweetpotato products into
the market, including sweetpotato French fries (SPFFs),
which has also experienced increased demand (Sato et al.,
2018). Current commercial production of sweetpotato fries
utilizes sweetpotato varieties that were developed and cul-
tivated for the fresh market, and there is interest in devel-
oping new varieties that enhance the quality of processed
products. Only a few research studies have investigated
the characteristics of fried sweetpotatoes prepared from a
variety of genotypes. SPFF textural properties (e.g., hard-
ness, moistness) were associated with sugar, dry matter,
starch, and alcohol-insoluble solids contents (Sato et al.,
2018; Walter et al., 1997). In sweetpotato chips, the dry
matter and starch contents were correlated with the force
to break the chip (Gao et al., 2014). However, the effects
of the individual constituent’s physiochemical properties
on the textural properties of fried sweetpotatoes were not
explored and is still largely unknown.

Other than water, starch is the predominate compo-
nent in sweetpotatoes and the content has been associated
with textural differences of cooked sweetpotatoes (Kita-
hara et al., 2017; Yoon et al., 2018). Sweetpotatoes with
higher starch contents tend to be dryer and mealier (Kita-
hara et al., 2017). In addition, sweetpotato starch ther-
mal and viscoelastic properties also vary among genotypes,
which is attributed to differences in starch molecular struc-
tures (Tong et al., 2020; Zhu & Wang, 2014). Thus, the
starch content and starch cooking characteristics could
both impact textures of products for human consumption,
but little is known on how the thermal and viscoelastic
properties of isolated sweetpotato starch relate to perceived
textural properties of cooked sweetpotato.

Because starch is a major component of sweetpotatoes,
we hypothesized that the isolated sweetpotato starch past-
ing properties and gel firmness would be associated with
the textural properties of SPFFs. Therefore, the objectives
of this study were to (1) determine similarities and differ-
ences in starch pasting properties and gel texture profiles
of a wide range of sweetpotato genotypes and (2) investi-
gate correlations between the sweetpotato starch pasting
and gel textural properties and the instrumental and sen-
sory textures of SPFFs.

2 | MATERIALS AND METHODS

2.1 | Raw materials

Sweetpotato starches were isolated from 16 sweetpotato
genotypes grown on two independent plots that were used
for SPFF production and sensory evaluation by Sato et al.
(2018). Sweetpotato genotypes were selected to represent
a wide range of dry matter content and sensory textural
attributes determined by Sato et al. (2018). All sweetpota-
toes were grown at the Horticultural Crops Research Sta-
tion in Clinton, NC, cured at 85 to 90% RH at 30 °C for
7 days, stored at 80 to 90% RH at 30 °C, and provided by
the Sweetpotato Breeding and Genetics Program at North
Carolina State University for fry preparation (Sato et al.,
2018) and starch extraction. The remaining sweetpotato
roots from the two plots used in the SPFF texture study by
Sato et al. (2018) were combined and samples were taken
for starch extraction following the method described by
Walter et al. (2000) with some modifications.

2.2 | Starch isolation

Starch was extracted from the same lots of sweetpotato
roots used in the SPFF texture study by Sato et al. (2018).
Starch was isolated and retained as separate samples for
the two Covington sweetpotato lots that were used in
the SPFF texture study. Starch extraction was performed
according to the method described by Walter et al. (2000)
with some modifications. Briefly, 1-kg batches of washed
sweetpotato roots were manually peeled, cut into 3-cm
chunks, and blended with 3 L of tap water for 2 min using
a heavy-duty blender (model LBC 15, Waring Commer-
cial, Torrington, CT, USA). The slurry was poured through
three layers of Miracloth and then allowed to settle for at
least 4 hr. The supernatant was discarded, and the sedi-
ment suspended again in 3 L of water and allowed to set-
tle for 4 hr. This procedure was repeated two additional
times. After the final decantation, the top colored layer of
starch was scraped off and discarded. The isolated starch
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was allowed to air-dry (22 °C) for 2 to 3 days and stored at
4°C.

2.3 | Starch pasting properties

Sweetpotato pasting properties were analyzed by a Rapid
Visco Analyzer (RVA) model Super 4 (Perten Instruments,
Springfield, IL, USA) using 2.25 g of starch in 22.75 ml of
water (9% w/w starch slurry). The RVA heating profile was
50 °C hold for 1 min, heated to 95 °C at 12 °C/min, 95 °C
hold for 2.5 min, cooled to 50 °C at 12 °C/min, and fin-
ished with a 50 °C hold for 2 min. The mixing rate was
960 rpm for the first 10 s followed by 160 rpm for the
remainder of the test. Pasting profiles were generated in
at least triplicate for each sweetpotato starch. The pasting
temperature, peak time (converted to peak temperature),
and the peak, trough, breakdown, final, and setback vis-
cosities were recorded.

2.4 | Instrumental texture profile
analysis

Following RVA analysis, each starch paste was transferred
into two 10-ml glass beakers (diameter 22 mm) to a height
of 15 mm, then stored at 4 °C for 48 hr to promote gel for-
mation for a total of six gels for each starch (Figure S1). Gels
were removed from the glass beakers, and the instrumen-
tal texture profiles of the starch gels were analyzed using
a Stable Micro Systems (Godalming, UK) TA-XT Plus Tex-
ture Analyzer with a 50-mm cylindrical probe at a speed of
1 mm/s to 50% deformation and a 5 s hold between dupli-
cate compressions. Texture profile parameters measured
were hardness: peak force of the first compression; cohe-
siveness: the ratio of the second compression force peak
area (work) to the first compression force peak area; adhe-
siveness: the area of the negative work between the first
and second compression; and gumminess: hardness mul-
tiplied by cohesiveness (Friedman et al., 1963). Some of the
9% w/w starch gels were fragile and sample handling for
texture profile analysis may have contributed to some of
the variability observed (Table 2).

2.5 | Amylose content

Amylose contents of sweetpotato starches were measured
using a Megazyme (Bray, Ireland) Amylose/Amylopectin
Enzymatic Assay kit following the manufacturer’s assay
procedure. Briefly, the native starch was gelatinized in
100 °C dimethyl sulfoxide (DMSO), then precipitated using
ethanol to separate the starch from lipids and free sug-

ars. The precipitated starch was redissolved in DMSO,
then Concanavalin A (a lectin) was added to precipi-
tate amylopectin, the amylopectin-Concanavalin A com-
plex was discarded, whereas the dissolved amylose was
fully hydrolyzed into D-glucose using a mixture of a-
amylase and amyloglucosidase. The D-glucose from amy-
lose was converted to quinoneimine using the GOPOD
reagent (glucose oxidase, peroxidase, 4-aminoantipyrine,
and p-hydroxybenzoic acid) and quantified by absorbance
at 510 nm using a Varian spectrophotometer, Cary WinUV
model 300 (Palo Alto, CA, USA).

2.6 | SPFF textures: Sensory attributes
and instrumental texture measurements

Sweetpotato starches characterized in this study were iso-
lated from the same sweetpotatoes used for preparation
and evaluation of SPFF textures in Sato et al. (2018). SPFF
texture was determined by a trained sensory analysis panel
and instrumental analyses. The methods are reported in
detail in Sato et al. (2018) and the data were incorporated
into the correlational and multivariate models in this study
to delineate the role of individual starch characteristics
in the context of the known influence of dry matter con-
tent and other compositional variables. Briefly, SPFF tex-
ture attributes (Table S1) were scored by a trained, 14-
member descriptive sensory analysis panel using intensity
scales that ranged from O to 15 that were calibrated with a
commercial SPFF reference sample. Samples were coded,
fried in a randomized incomplete block design, and pre-
sented warm (3 min after frying, ~60 °C) for independent
evaluation by each panelist. All experimental proto-
cols were conducted in a food-grade environment using
hygienic practices and following all guidance for use of
human subjects outlined by the Institutional Review Board
at North Carolina State University (Raleigh, NC, USA).
Instrumental texture analyses were performed on the same
batch of fries evaluated by the sensory panel, including
peak puncture force with a 2-mm cylindrical puncture
probe and overall hardness determination with a French
fry rig (Texture Technologies Corp., Hamilton, MA, USA).
Sensory attribute panel means and average instrumental
texture values for each genotype and lot were used for the
statistical analyses in this study.

2.7 | Data analysis

Isolated sweetpotato starch characteristics were correlated
with the corresponding SPFF textural properties reported
in Sato et al. (2018). Generation of graphs and tables,
Pearson’s correlation coefficients (r), and significance of
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FIGURE 1

Pasting peak (white), trough (light gray), and final (dark gray) viscosities of 9% w/w sweetpotato starch slurries. Error bars

represent 1 standard deviation. Statistical groupings within peak, trough, and final viscosities are indicated by lowercase letters (o = 0.05)

correlations were performed using Microsoft Excel 365
(Redmond, WA, USA). The p-values of correlations were
calculated using a two-tailed Student’s ¢-test. Data distri-
bution plots of significant starch properties to SPFF texture
correlations (Figures S19-S31) and confirmation of correla-
tion analysis were conducted in JMP Pro 14.2.0 (SAS Inc.,
Cary, NC, USA) using the Liner Fit function of a Fit Y by X
scatterplot. Differences in amylose contents, pasting prop-
erties, and gel textural properties between sweetpotato
starches were compared using one-way ANOVA followed
by Tukey HSD post- hoc tests (o = 0.05) in JMP Pro 14.2.0.
The differences in the starch pasting and gel textural prop-
erties from OFSP and yellow/cream/white-fleshed sweet-
potatoes were compared using Student’s t-tests (o = 0.05)
also in JMP Pro 14.2.0. Partial least squares (PLS) analy-
ses were used to model measured starch properties and
raw sweetpotato and SPFF compositions (effects) on the
SPFF textures (responses). A K-fold cross validation (K = 7-
fold) using the nonlinear iterative PLS method was used
to select the optimum number of latent factors in the PLS
model. PLS modeling of the effects (starch properties and
compositions) to the individual SPFF textures was also per-
formed and variables with a variable importance in pro-
jection (VIP) score greater than 1.0 were considered strong
predictors. PLS modeling was performed in JMP Pro 14.2.0.

3 | RESULTS AND DISCUSSION
3.1 | Isolated sweetpotato starch
properties

3.1.1 | Starch pasting properties

The pasting properties of the 16 sweetpotato starches var-
ied significantly but were comparable to those of African
(Tsakama. et al., 2010) and New Zealand (Cui & Zhu, 2019)
sweetpotato starches. Peak viscosities ranged from 1199
to 3912 mPa-s, trough viscosities from 388 to 1606 mPa-s,
breakdowns from 811 to 2070 mPa-s, final viscosities from
532 to 2468 mPa-s, and setbacks from 144 to 625 mPa-s
(Figures 1, 2, and S2-S17, and Table S2). By far, NC08-036
starch had the lowest pasting viscosities (peak, trough, and
final), whereas Evangeline, NC09-122, NCDM04-197, and
Porto Rico starches were in the next lowest pasting vis-
cosities group (Figure 1 and Table S2). The starches with
the highest pasting, trough, and final viscosities were from
Bonita, NC05-198, NC13-1012, NC13-1027, and NC13-487
sweetpotatoes (Figure 1 and Table S2). It is important to
note that the pasting viscosities were positively correlated
with one another (Table 1), suggesting paste profiles with
high peak viscosities will also have higher trough and final



SWEETPOTATO STARCH IMPACT ON FRY TEXTURE...

(a) 4000
3500 :
3000
72500 I
- I:\
£ 2000 h: A
g 10\
S \
£

._‘
@
S
=
-
T,
7
Ve
/

1000

500

(b) 300

NN
S W
S <@

Viscosity (mPa-s)
. [
S W
S =

74
=

=)

Food Science vy, gy ==

100
90
80

cessten
esee .o
oo

.

70

o
.o
. .
........

Temperature (°C)

60

50

40
14

100
90
80
70
60

Temperature (°C)

50
40

Time (min)

FIGURE 2

Rapid Visco Analyzer pasting profiles (a) and pasting onsets (b) of NC08-036 (purple, solid line), Porto Rico (blue, long dash

line), Beauregard (green, medium dash line), Bonita (yellow, short dash line), and NC13-487 (red, dotted line) sweetpotato starches. Error bars
represent 1 standard deviation and the gray line is the RVA chamber temperature

viscosities. Similar correlations among pasting viscosities
of sweetpotato starches were reported by Collado et al.
(1999) and Tsakama et al. (2010). There were also positive
correlations between the peak, trough, and final viscosities
with the breakdown and setback viscosities (Table 1); thus,
the starches with greater thickening power had the biggest
changes in viscosity during the pasting profile.

The pasting temperatures and peak viscosity tem-
peratures also varied significantly between sweetpotato
starches. Pasting temperatures ranged from 69.3 to 76.7 °C,
which is similar to the 70.2 to 76.6 °C range (n = 106)
reported by the International Potato Center (CIP) (Bra-
bet et al., 1999); and peak temperatures ranged from 86.3
to 92.7 °C (Figure 3). Despite the pasting temperature
preceding the peak temperature, the pasting tempera-
tures and peak temperatures were not correlated to one
another (Table 1), suggesting that the granule swelling
rates and granule integrities (resistance to rupturing) were

independent of the pasting temperature. For example,
starches with greater amounts of short amylopectin chains
(DP 6-12) tend to have lower pasting temperatures (Tong
et al., 2020), whereas the peak pasting temperature (or
peak time) is a function of granule swelling rates and
swollen granule integrities. Granule swelling is affected
by the amylose and lipids, which restrict swelling (Tester
& Morrison, 1990), whereas the integrities of swollen
granules increase with amylopectin—amylopectin entan-
glement (Han & Hamaker, 2001; Vamadevan & Bertoft,
2020). Albeit the pasting temperature must precede the
peak temperature, these temperatures are independent of
each other due to the different factors affecting them.
When starch pasting properties were grouped by sweet-
potato flesh color, orange or yellow/cream (Table S3), the
pasting temperature was the sole significantly different
pasting property. The pasting temperatures of starches iso-
lated from OFSP (72.2 + 2.0 °C) were lower than the
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starches isolated from yellow/cream-fleshed sweetpota-
toes (75.5 + 1.1 °C) (Figure 4a). Similarly, when the pasting
temperatures reported in Waramboi et al. (2011), Yoon et al.
(2018), and Lee and Lee (2017) were analyzed by flesh color
(combined with this study’s data and separately), again,
the starch from OFSP was lower than yellow/cream/white-
fleshed sweetpotatoes (Figures 4b and 4c). This differ-
ence in pasting temperatures may be due to biochemical
differences in OFSP versus yellow/cream/white-fleshed
sweetpotatoes. OFSP have much higher carotenoid levels
(mostly S-carotene) (Donado-Pestana et al., 2012; Truong
et al., 2018), which are negatively associated with dry
solid and starch contents (Cervantes-Flores et al., 2011;
Noda et al., 1998; Tomlins et al., 2012). Both starch and
carotenoids are energy sinks (Cazzonelli, 2011); there-
fore, the energy demand to produce carotenoids may be
impacting the starch granule architecture in a manner
that results in a lower pasting temperature. Lee and Lee
(2017) also reported an OFSP starch (undisclosed vari-
ety) had a lower pasting temperature than starch from a
white-fleshed variety (undisclosed variety) and attributed
it to the starch swelling more rapidly after gelatinization.
Interestingly, the gelatinization temperatures reported in
Waramboi et al. (2011) were not significantly different
between OFSP and yellow/cream/white-fleshed sweet-
potatoes (Figure S18). Thus, the gelatinization temperature
is not the sole factor influencing the pasting temperature.

It is unclear why starches from OFSP paste at lower tem-
peratures and swell faster.

Starch pasting properties are affected by multiple vari-
ables, such as amylose contents (Tester & Morrison, 1990),
amylose lengths and amylopectin molecular weights (Mua
& Jackson, 1997), positioning of amylose within the starch
granule (Vamadevan & Bertoft, 2020), amylopectin molec-
ular structures (Han & Hamaker, 2001; Tong et al., 2020;
Zhu et al., 2011), granule proteins and lipids (Debet & Gid-
ley, 2006), phosphorus content (Abegunde et al., 2013),
and granule size (Chen et al., 2003). Therefore, the effects
of starch structure on pasting profiles are complex (Jane
et al., 1999) and not yet fully elucidated for sweetpotato.
Nonetheless, significant variation in pasting profiles of
sweetpotato starches demonstrated the potential effects of
starch structure on the varying textures of processed sweet-
potatoes.

3.1.2 | Starch gel textural properties

The textural properties of the sweetpotato starch gels also
varied significantly among the genotypes (Table 2) regard-
less of the flesh color. Gel hardness values ranged from
172 to 922 g, adhesiveness from ~0 to —39.2 g-s, cohesive-
ness from 0.34 to 0.86%, and gumminess from 138.7 to
728.6 g (Table 2). Evangeline, NC09-122, NCDM04-197, and
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Porto Rico starch gels were the hardest and most gummy,
whereas Bonita, NC05-198, NC13-1001, NC13-1004, NC13-
1012, NC13-1027, and NC13-487 starch gels were the least
hard and gummy (Table 2). In general, starch gels with
greater hardness and gumminess values also tended to
have greater adhesiveness (greater adhesiveness is repre-
sented by more negative values) (Table 1). However, it is
important to consider that adhesiveness is considered as
a “secondary parameter” by the TPA instrument manu-
facturer due to risk of erroneous measurements from the
sample sticking to the probe (Texture Technologies, 2015).
Several coefficients of variation for adhesiveness (Table 1)
were exceptionally high; thus, no clear conclusions can

be drawn with regard to starch gel adhesiveness. Most
starch gels had similar cohesiveness values around 0.75%
to 0.85%, but the NC08-036 starch gels had exceptionally
low cohesiveness (0.34%), suggesting the gel was fragile
and substantially compromised after the first compression.

The starch gel hardness values were negatively corre-
lated with the RVA pasting viscosities (Table 1); there-
fore, starches with lower pasting viscosities solidified into
harder gels. The gel hardness was not simply due to a
greater final viscosity, rather the differences in starch gel
hardness values were likely a result of varying extents of
retrogradation. Ishiguro et al. (2000) also reported textu-
ral differences of sweetpotato starch gels and demonstrated
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Pearson correlation coefficients (r) between sweetpotato starch amylose percentages (bolded), Rapid Visco Analyzer measured properties, and Texture Analyzer measured

properties (italicized) (**P-value <0.01; *P-value <0.05)

TABLE 1

Cohesive-
ness

Adhesive-
ness

Final

Breakdown viscosity

Trough

Peak temp. viscosity

Peak

Hardness

Setback

viscosity

Pasting temp.

Amylose
—0.03
—0.62*
—-0.35
—0.56*
—0.63**
—0.55*
—0.48
—0.45
—-0.24
—0.53*
—0.28

Pasting temp.

—0.03
—-0.12

Peak viscosity

—-0.22

—0.96**
—0.96**
—0.97**
—0.92%*
—0.87%*
—0.75**
—0.70**
—0.68**

Peak temp.

—0.12
-0.31
—0.12
—0.13
—0.16
—0.12
—0.50*
-0.03

0.16
—-0.11
—0.15
-0.13
—0.01
—0.15
—0.19
—0.08

Trough viscosity

Science

—0.84**
—0.99**
—0.93**
—0.84**
—0.68**
—0.68**
—0.65**

Breakdown

—0.85%*
—0.84**
—0.84**
—0.76™**
—0.67**
—0.65**

Final viscosity

Setback

—0.96**
—0.87**
—0.72%*
—0.66**
—0.69**

SWEETPOTATO STARCH IMPACT ON FRY TEXTURE...

—0.91*%*
—0.82**
—0.56*

—0.77%*

Hardness

—0.86**
—0.37
—0.94%

Adhesiveness

—0.24

Cohesiveness

—-0.02

—0.84**

Gumminess

the gel firmness was associated with retrogradation. It
is postulated that the sweetpotato starch gels with lower
hardness values (Table 2) retrograded less, possibly due to
differences in the amylopectin structures. The amylopectin
structure affects the retrogradation attributes, where amy-
lopectin molecules with greater amounts of short A-chains
(DP 6-12) tend to retrograde less (Vamadevan & Bertoft,
2018). In addition, these short A-chains have been pos-
itively correlated with higher pasting peak viscosities of
sweetpotato starches (Tong et al., 2020; Zhu et al., 2011),
which is consistent with the pasting peak viscosities nega-
tively correlated with gel hardness in this study (Table 1).
Therefore, it was likely that the sweetpotato starches with
greater amounts of short A-chains resulted in high past-
ing peak viscosities and weak starch gels. For example, we
hypothesize that NC05-198 starch likely had a higher ratio
of short A-chains because it had a high pasting viscosity
(Figures 1 and S6 and Table S2) and low gel hardness value
(Table 2).

3.1.3 |
starches

Amylose content of sweetpotato

Sweetpotato starch amylose content ranged from 17.3% to
21.1% (Table 2). These were similar to previous reports,
which ranged from 18.63% to 20.45% (Tong et al., 2020)
and 18.6% to 27.1% with more than half of the evalu-
ated CIP sweetpotatoes being within 20%-23% amylose
(Brabet et al., 1999). Despite the narrow amylose per-
centage range, there were significant negative correlations
with the pasting viscosities and the cohesiveness of the
starch gels (Table 1), suggesting that small differences in
amylose content may partially contribute to the sweet-
potato starch pasting and gelling properties. During past-
ing, amylose restricts granule swelling (Tester & Morrison,
1990) and contributes minimal viscosity to the hot paste
(trough viscosity) (Mua & Jackson, 1997). Thus, greater
amounts of amylose in sweetpotato starch likely acted as an
antagonist to granule swelling while not substantially con-
tributing to the overall viscosity, resulting in lower pasting
viscosities. Upon cooling, amylose begins to associate caus-
ing an increase in setback viscosity and greater setbacks
are experienced with larger amylose molecules (Mua &
Jackson, 1997). As the amylose-amylose interactions con-
tinue to increase with time, the cohesiveness of amylose
gels also continues to decrease (Mua & Jackson, 1997).
The relatively high amylose percentage of NC08-036 starch
(Table 2) could be partly contributing to the exception-
ally low peak pasting viscosity (Figures 1 and S7) and low
gel cohesiveness (Table 2). However, it is important to
note that the impact of amylose on pasting and gelling
properties is not solely based on content but on amylose
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interactions within the granule and the amylose structure
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TABLE 4 Pearson correlation coefficients (r) between Texture Analyzer measured properties of sweetpotato starch paste and the

respective sweetpotato French fry sensory attributes and Texture Analyzer (italicized) measured properties (*P-value <0.05)

Sensory and mechanical

Texture analyzer properties

texture properties Hardness Adhesiveness Cohesiveness Gumminess
Oiliness -0.34 -0.53* -0.21 -0.45
Roughness -0.10 -0.05 -0.32 -0.25
Overall hardness -0.27 -0.10 -0.45 -0.11
Fracturability -0.18 -0.04 -0.41 -0.03
Denseness -0.59* -0.54* -0.23 -0.55%
Outer crispness -0.16 -0.05 -0.46 -0.01
Inner smoothness -0.21 -0.02 -0.45 -0.05
Inner moistness -0.01 -0.20 -0.47 -0.19
Inner fibrousness -0.35 -0.40 -0.07 -0.39
Cohesiveness -0.15 -0.01 -0.14 -0.10
Peak Force -0.12 -0.01 -0.29 -0.00
Hardness -0.08 -0.06 -0.32 -0.05

A unique finding was that starches with higher past-
ing viscosities were positively correlated with the sen-
sory “denseness” attribute in the respective French fries
(Table 3). Therefore, more “dense” sweetpotato fries likely
had greater viscosities within the sweetpotato cells that
impacted the sensory experience. Denseness was previ-
ously identified as an important texture attribute for baked
sweetpotato with variation in denseness among genotypes
both within and between sweetpotatoes of varying flesh
colors (Leksrisompong et al., 2012). Similarly, perceived
denseness of the fry interior was one of the key differentiat-
ing sensory texture attributes among SPFF prepared from
16 sweetpotato genotypes and a fundamental difference
between SPFF and the commonly consumed white potato
fries. However, this texture attribute was not correlated
with any of the commonly measured chemical compo-
nents of sweetpotato or sweetpotato fries (Sato et al., 2018).
Thus, the association between fry denseness and starch
pasting viscosities suggests that sweetpotato starch pasting
properties affect the sensorial SPFF denseness. These dif-
ferences in starch pasting properties are likely due to vary-
ing amylopectin molecular structures, where higher ratios
of short amylopectin branch chains (DP 6-12) were posi-
tively associated with higher peak pasting viscosities (Tong
et al., 2020; Zhu et al., 2011). In cooked sweetpotato tissue,
the gelatinized starch granules swell and merge into a sin-
gle “sponge-like” mass (Valetudie et al., 1999). Thus, it is
postulated that sweetpotato starches with greater amounts
of short amylopectin branches likely induce higher local
viscosities within the sweetpotato cell, which may impart
a more “dense” mouthfeel.

3.2.2 | Starch gel textural properties in
relation to French fry sensory attributes

The starch gel textural properties were also correlated with
French fry denseness and oiliness (Table 4). Sweetpotatoes
with starches that formed more adhesive but less hard and
gummy gels tended to produce sensorially dense fries; and
the sweetpotatoes with more adhesive starch gels were cor-
related with the perception of oilier fries (Table 4). Because
the starch in the SPFFs likely did not gel within the 3-min
timeframe from the fryer to the sensory analysis test, the
correlations between the starch gel textures and SPFF tex-
tures are likely due to starch structures that affect both the
gelling properties and SPFF textures. For example, starch
gel hardness, adhesiveness, and gumminess were corre-
lated to starch pasting viscosity, and starch pasting viscos-
ity was correlated to SPFF denseness.

3.2.3 | No relationship between starch
pasting and gel textural properties with French
fry instrumental texture analyses

The instrumentally measured textural properties of sweet-
potato fries (peak force and hardness) were not signifi-
cantly correlated to the isolated starch pasting or gel tex-
tural properties (Tables 3 and 4). This lack of correlation
suggests that differences in the physiochemical properties
of the pasted starch, that is contained within the cells, did
not directly affect the force needed to break the fry. In
potato (Solanum tuberosum) French fries, the measured
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hardness is dictated by the breaking point of the middle
lamella between the cells or the rupturing through cells
(Singh et al., 2016) but is also associated with the starch
content, granule size, starch swelling power, cell size, and
cell wall integrity after cooking (Bordoloi et al., 2012). The
measured hardness and peak forces of SPFFs were previ-
ously correlated with the starch and dry matter contents;
however, the hardness of SPFFs made from NC13-487 was
two to three times higher than sweetpotatoes with simi-
lar starch contents (Sato et al., 2018). Therefore, the starch
contents likely affect fry hardness, whereas starch thick-
ening power localized within the cell does not, and other
nonstarch SPFF constituents can also affect SPFF hard-
ness. It is postulated that the intercellular polysaccharides
(e.g., pectin) and cell wall integrities also contribute to the
breaking strength of SPFFs.

3.2.4 | Multivariate modeling of SPFF texture
with sweetpotato composition and isolated
starch properties

The effects of sweetpotato starch properties on SPFF sen-
sory textures were also investigated using PLS analysis to
simultaneously account for all measured starch properties
and raw sweetpotato and SPFF compositions (effects) on
the SPFF textures (responses). In a two-factor PLS model,

1.0

60.1% of the SPFF texture variances were explained and
many of the effects and responses were primarily explained
by just one of the latent factors. In the correlation loading
plot (Figure 5), effects and responses that were positively
associated are in proximity to each other, whereas nega-
tive associations are in diagonal quadrants (e.g., top right
vs. bottom left). Most of the SPFF textures, except fibrous-
ness, oiliness, and denseness, mainly explained latent fac-
tor 1and little of factor 2 (Figures 5 and S32). Similarly, most
of the raw sweetpotato and SPFF contents and the starch
pasting and peak temperatures also explained latent fac-
tor 1 but not factor 2; thus, both sweetpotato composition
and starch pasting and peak temperatures were associated
with most of the SPFF textures (Figures 5 and S32). This
is in agreement with the starch pasting and peak tempera-
tures being correlated to the greatest number of SPFF tex-
tures (six of the eight significantly correlated SPFF textures
in Tables 3 and 4) and the correlations between moisture
and starch contents of SPFF textures reported by Sato et al.
(2018). The primary response explaining latent factor 2 was
SPFF denseness, whereas the variables were starch past-
ing viscosities, starch gel adhesiveness, gumminess, and
hardness, SPFF nonstarch alcohol-insoluble solids (AIS),
and oil contents (Figures 5 and S32). This suggests the
SPFF denseness was associated with these starch proper-
ties, which agrees with the linear correlations in this study
(Tables 3 and 4).
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The combined effects of sweetpotato starch properties,
raw sweetpotato composition, and SPFF composition on
SPFF textures were further investigated by performing
individual PLS analyses with each SPFF texture (Table 5).
Variables that were considered important predictors of
individual SPFF textures in the PLS models had VIP scores
greater than 1.0, and the model coefficient sign indicated
the type of association, positive or negative (Cox & Gau-
dard, 2013). When accounting for the isolated starch prop-
erties, most of the SPFF textures, excluding SPFF dense-
ness, were still primarily associated with raw sweetpotato
and SPFF composition as reported in Sato et al. (2018). A
new composition that was included in the models in this
study was nonstarch AIS content, which was calculated
as total AIS minus the starch content. The AIS fraction is
composed of cell polymers such as starch, cellulose, hemi-
cellulose, pectin, proteins, lignin, and DNA (Fry, 2010;
Noda et al., 1994; Selvendran, 1975). Therefore, the non-
starch AIS content is an estimation of alcohol-insoluble
cell wall materials and proteins. Interestingly, SPFF non-
starch AIS content had the highest VIP score in predicting
SPFF denseness, whereas other raw sweetpotato and SPFF
compositions were not associated with SPFF denseness.
When accounting for raw sweetpotato and SPFF composi-
tions, the isolated starch properties were not strong predic-
tors of SPFF textures, except for SPFF denseness (Table 5).
Starch pasting temperature was associated with SPFF oili-
ness, moistness, and fibrousness but sweetpotato composi-
tions had higher VIP values and would likely be better pre-
dictors. Also, both the raw sweetpotato and SPFF compo-
sitions were essentially equivalent at predicting SPFF tex-
tures and had the same positive or negative model coef-
ficient signs (i.e., directionality of associations). However,
the associations of nonstarch AIS contents in raw sweet-
potato and SPFF with SPFF textures were vastly differ-
ent. For example, raw nonstarch AIS was associated with
SPFF oiliness, roughness, crispness, and smoothness and
not hardness or denseness, whereas nonstarch AIS con-
tents of SPFF were not associated with these attributes but
highly associated with hardness and denseness. Thus, the
changes in the nonstarch AIS fraction must have varied
among the genotypes during cooking. The biggest change
was likely the cleavage of pectins during heating from
p-elimination of the glycosidic linkage of nonmethylated
galacturonsyl units (Keijbets & Pilnik, 1974; Plat et al.,
1988). Therefore, most of the SPFF textures could be rea-
sonably predicted by the raw sweetpotato composition, but
the SPFF denseness, a distinguishing SPFF texture, is likely
a function of the cell wall polymers (e.g., pectins and struc-
tural proteins) and the local viscosity within the cell from
pasted starch. More research is needed to understand the
impact of cell wall polymers on SPFF fry textural nuances.

4 | CONCLUSIONS

Isolated sweetpotato starches exhibited varying pasting
and gel textural properties among the genotypes. These
thermal and viscoelastic differences between sweetpotato
starches were hypothesized to result from varying starch
structures and granule morphologies. Sweetpotato starch
pasting properties and gel viscoelastic properties were cor-
related with perceived SPFF sensory texture attributes but
not with the force required to break the fries. Starch pasting
temperatures were negatively correlated with several SPFF
textural properties (e.g., smoothness and moistness), thus
the cooking characteristics of the sweetpotato starch likely
influenced the textural properties of the SPFFs. Notably,
the perceived denseness of SPFFs, an important texture
attribute of SPFF that was unrelated to sweetpotato prox-
imate composition, was correlated with the starch past-
ing viscosities and textural properties of starch gels. The
range of amylose content among sweetpotato starches was
relatively narrow and was not correlated with any SPFF
textures. Accounting for raw sweetpotato and SPFF com-
positions and the isolated starch properties, most SPFF tex-
ture attributes were associated with starch pasting temper-
atures and content. SPFF denseness was positively asso-
ciated with starch pasting viscosities, starch gel adhesive-
ness, and the SPFF nonstarch AIS contents. SPFF dense-
ness, a distinguishing SPFF texture, was likely a response
of the starch thickening power within the cell and cell
wall material strength during frying. Correlations between
sweetpotato starch properties and SPFF textures demon-
strated that SPFF textures are not solely dictated by starch
content but also influenced by the starch’s viscoelastic and
thermal properties.
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